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Abstract
We consider the energy spectra of quantum Hamilton systems whose classical
dynamics is of mixed type, i.e. regular for some initial conditions in the classical
phase space and chaotic for the complementary initial conditions. In the strict
semiclassical limit when the effective Planck constant h̄eff is sufficiently small
the Berry–Robnik (BR) statistics applies, while at larger values of h̄eff (or
smaller energies) one sees deviations from BR due to localization and tunneling
effects. We derive a two-level random matrix model, which describes these
effects and can be treated analytically in a closed form. The coupling between
the regular and chaotic levels due to tunneling is assumed to be Gaussian
distributed. This two-level model describes most of the features of matrices of
large dimensions (here N = 1000), which we treat numerically, and is predicted
to apply in mixed type systems at low energies. The proposed analytical
level spacing distribution function has two parameters, the BR parameter ρ,
characterizing the classical phase space, and the coupling (antenna distortion
or tunneling) parameter σ between states. Localization effects so far are not
included in our analysis except in the special case where ρ can be replaced by
some effective ρeff .
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1. Introduction

Random matrix theory (RMT) [1–5] has proved to be an excellent model for the statistical
properties of energy spectra of classically chaotic Hamiltonian systems, even if the number
of degrees of freedom is small, say just two. This is certainly one of the most dramatic
manifestations or signatures of classical chaos in bound quantum systems, one of the
cornerstones of quantum chaos. It goes back to the original papers by Casati, Valz-Gris and
Guarneri [6], where some research toward this goal with important ideas has been published,
and the classic paper by Bohigas, Giannoni and Schmit [7], where the conjecture about the
universality of RMT in classically fully chaotic (ergodic) systems was formulated. It has
been theoretically supported by the dynamical and semiclassical theory of spectral rigidity
by M V Berry [8] using the diagonal approximation in the treatments of double sums over
periodic orbits. The next important step beyond this approximation has been achieved by
Sieber and Richter [9], followed by the development of an expanded semiclassical theory by
S Müller et al [10–12]. Classically integrable quantum systems show Poissonian statistics,
as is well known and corroborated by extensive numerical and analytical works (see [13] and
references therein), whereas in chaotic systems the spectral fluctuations obey the statistics of the
Gaussian orthogonal (GOE) or unitary (GUE) ensembles (depending on whether an antiunitary
symmetry exists or not, respectively [5]). Usually the well-known Wigner surmise (formula)
(see equation (19)) describes well the level spacing distribution for the infinite dimensional
GOE (or GUE) level spacing distribution. For higher-order level spacing distributions useful
approximate closed form formulae have been derived in [14], based on the same footing.

Typical systems in nature are, however, neither integrable nor fully chaotic but somewhere
in between, namely there may be a classically regular motion on invariant tori for some initial
conditions in the classical phase space, and chaotic motion for the complementary initial
conditions. One important class is the nearly integrable systems, i.e. only weakly perturbed
integrable systems, described by the KAM scenario (for the KAM theorem, see e.g. [15]).
One often studied example is the 2D billiard family introduced in [16] and [17], but there are
others such as the mushroom billiard introduced by Bunimovich [18], and currently a subject
of intense theoretical, numerical and experimental studies [19, 54]. In this billiard, we have
exactly one invariant chaotic and one invariant regular component.

The spectral statistics in such mixed type systems rests upon the so-called principle of
uniform semiclassical condensation (PUSC) of Wigner functions of eigenstates and goes back
to the notion of regular and irregular eigenstates proposed by Percival [22], the theoretical
foundations by Berry [23] and the theory by Berry and Robnik [24]. The research on
quantum spectra of mixed type systems was initiated in [16] and [17]. A review of these
ideas, foundations and results can be found in [25] (for further references see [26–33]).
The best mathematical statistical measure to analyze such systems are the so-called E(k,L)

probabilities3 introduced in the context of quantum chaos by Aurich, Bäcker and Steiner [34].
The theory states that the E(k,L) statistics factorize in the strict semiclassical limit of a
sufficiently small effective Planck constant h̄eff , and for the case of level spacings the formulae
by Berry and Robnik [24] should apply. The factorization property is a direct consequence of
statistical independence of the sequences of regular and irregular levels. Berry–Robnik (BR)
theory has been verified in many different systems in the asymptotic semiclassical regime
[26–37]. Recent advances in understanding the mixed type systems [38, 39] are consistent
with this semiclassical limiting behavior. There has been a number of attempts in the literature

3 E(k, L) is the probability of having exactly k levels in an interval of length L—after unfolding, i.e. with
mean level density equal to one. The gap probability E(0, L) is directly related to the level spacing distribution
P(S) = d2E(0, S)/dS2.
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to describe correctly the level statistics in the mixed type systems, just somehow interpolating
between the RMT and the Poissonian statistics, but unlike BR they are not based on sound
physical grounds, and have not been confirmed in the semiclassical limit. For a review see
chapter 3.2.2 of [2].

If the energy is not sufficiently large and thus h̄eff not sufficiently small one observes
deviations from BR behavior which emerge due to both, the localization effects and the
tunneling between the regular and chaotic regions in the quantum phase space of Wigner
functions of eigenstates. The result is a linear behavior of P(S) at small S, as predicted
qualitatively already by Berry and Robnik in [24]. A fractional power-law level repulsion was
discussed in [28], and this regime is observed between the linear level repulsion regime and
the BR tail. The main reason for the fractional power-law level repulsion presumably lies in
the localization effects. For a qualitative overall picture see [40].

The purpose of this paper is to offer a new random matrix model in order to generalize
the BR level spacing distribution by including the tunneling effects between eigenstates. We
shall not consider the localization effects, so we assume that the PUSC is satisfied, but the
level splittings are affected by tunneling mechanisms, which couple the regular and chaotic
levels, and also regular–regular through the intermediary of chaotic levels. The tunneling
phenomena have been studied systematically in the context of quantum chaos since more than
15 years, and we are still quite far away from a complete general understanding. The most
important contributions can be found in [41–52], and more recently in [38, 39]. The approach
of Podolskiy and Narimanov [51] is very close to ours, but is semiclassical and thus, as will
be seen, complementary to ours.

The influence of tunneling becomes essential whenever two eigenvalues from the chaotic
and the regular region are degenerate. In this case, tunneling produces a quantum-mechanical
mixture of the respective eigenfunctions ψC and ψR , and the degeneracy is lifted. The
determination of the mixing angle from the physical properties of the system is a highly
non-trivial task, and only first steps in this direction have been performed [53].

This was our motivation to mimic tunneling by means of a two-level random matrix model
where the non-diagonal elements correspond to the tunneling matrix elements. Since hitherto
nothing is known on the distribution of tunneling matrix elements in real systems, we assumed
a Gaussian distribution. But we would like to stress that the approach of this paper holds for
arbitrary distributions. The motivation to this work came from microwave experiments and
simulations of mushroom billiards. The details of this work will be presented elsewhere [54],
but one example will be shown to illustrate the performance of the model in a real physical
system in section 5.

Tunneling leads to a mixture of integrable and chaotic states, but does not influence pairs
from the integrable and chaotic sub-spectra, respectively. Since a two by two matrix cannot
know where the two levels involved come from, a two-step procedure has been applied. First,
we studied the case, where all pairs of eigenvalues interact via non-diagonal elements, also
integrable–integrable and chaotic–chaotic ones. This situation holds, e.g., in microwave
experiments, due to the presence of the measuring antenna. The tunneling distribution
functions are then obtained by a weighted mean of the antenna distorted distribution functions
and the undistorted BR distribution, where the weight factors just take care of the number of
integrable–chaotic pairs on one hand, and integrable–integrable and chaotic–chaotic pairs on
the other hand, respectively.

Following the recent advances in non-Gaussian and non-normal random matrices in
[55, 56] and [57] we try to verify to what extent the properties of our matrix ensemble are
structurally stable, i.e. robust against variations of the model properties such as the statistics of
the matrix elements. Finally, we shall apply our theoretical results to describe the level spacing
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distribution for a certain configuration of the mushroom billiard, both for experimental data
for microwave cavities and from the numerical data.

2. The distorted Berry–Robnik level spacing distribution

Consider 2 × 2 symmetric matrices A = (Aij ), where i, j = 1 or 2. In the present context
only the difference between eigenvalues is of relevance. Without loss of generality (see [55]),
we may thus assume that the trace of A vanishes, i.e.

A =
(

a b

b −a

)
, (1)

where a and b are real. For the eigenvalues of A it follows

λ1,2 = ±
√

a2 + b2, (2)

and the level spacing distribution is given by

P(S) =
∫ +∞

−∞

∫ +∞

−∞
da dbδ(S − 2

√
a2 + b2)ga(a)gb(b), (3)

where δ(x) is the Dirac delta function, ga(a) and gb(b) are the normalized probability densities
of the diagonal and off-diagonal matrix elements a and b, respectively.

Introducing polar coordinates

a = r cos ϕ, b = r sin ϕ (4)

where r ∈ [0,∞) and 0 � ϕ � 2π , we can do the r-integration immediately and get the
general formula [56]

P(S) = S

4

∫ 2π

0
dϕ ga

(
S

2
cos ϕ

)
gb

(
S

2
sin ϕ

)
. (5)

By construction this distribution is automatically normalized, 〈1〉 = 1, but in general this is
not true for the first moment, 〈S〉 �= 1. If ga(x) and gb(x) are regular and nonzero at x = 0,
then the integrand at S = 0 is just a nonzero number equal to ga(0)gb(0), and we get for
small S

P(S) ≈ πS

2
ga(0)gb(0). (6)

Thus in case where both ga and gb are regular and nonzero at S = 0, we always have linear
level repulsion. This linear level repulsion law is very robust, it depends only on the regularity
properties of the distribution functions of the matrix elements at zero value. For regular
distribution functions, ga,b(x), higher order corrections in S to this formula can be obtained
from Taylor expansions of ga(x) and gb(x) around x = 0. If either ga(x) or gb(x) is zero at
x = 0, the level repulsion is no longer linear, but of higher order, e.g. quadratic or even cubic,
depending on the behavior of ga(x) and gb(x) at x = 0. We also see that the level repulsion
is not linear in S, if ga(0) and gb(0) do not exist, since the distributions ga(x) and gb(x) are
singular at x = 0. In such a case we obtain a fractional power-law level repulsion discovered
and studied in detail in [28]. Indeed, we shall analyze such an important case in another paper,
following a preliminary study in [56].

Equation (5) holds for arbitrary distributions of the diagonal and off-diagonal matrix
elements of A. Let us now assume that in the absence of off-diagonal elements the level spacing
distribution of A is given by the BR expression denoted by PBR(S), which is normalized,
〈1〉BR = 1 and has unit mean level spacing, 〈S〉BR = 1. Since the distance between the two
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eigenvalues of A in the absence of off-diagonal elements is 2|a|, we find that the a distribution
leading to the BR distribution must be chosen as

gBR(a) = PBR(2|a|). (7)

In the presence of off-diagonal matrix elements b the BR level distance distribution is distorted.
Let us first assume that in the physical system there are off-diagonal matrix elements between
all pairs of eigenstates, so that we have the case of all-to-all level couplings. An example is
found in the spectra obtained in a microwave experiment, due to the presence of the antenna
[58]4, so for the all-to-all level coupling case we can use also the terminology antenna-distorted
BR distribution, denoted by P A

DBRN(S). Here N is the dimension of the matrix and default (no
index) is N = 2. When this distribution function is normalized to the unit mean level spacing
we shall write it as P An

DBRN(S). For the sake of simplicity let us follow in our model (1) the usual
practice in RMT and assume a normalized Gaussian distribution for the off-diagonal elements
b. The standard deviation σ of gb(b) can be considered as a measure for the strength of the
physical coupling between the coupled states. If σ = 0, we have gb(b) = δ(b) corresponding
to vanishing coupling, while at nonzero values of σ we have nonzero b′s, representing the
level coupling. It will turn out that our 2D theory, parametrized by the value of σ , is almost
always in excellent agreement with the numerical simulations of the level spacing distributions
for large matrices. This will be treated in section 4.

A comment on the choice of the statistics of the off-diagonal elements is appropriate at
this point. For arbitrary non-Gaussian N-dimensional random matrix ensembles, it has been
shown by Hackenbroich and Weidenmüller [59], using Efetov’s supersymmetric techniques,
that the RMT statistics of local spectral fluctuations (after the spectral unfolding) is universal
for all of them, provided the limiting level distribution N → ∞ is smooth and confined to
a finite interval. This universality behavior generally speaking allows us to choose simply
Gaussian matrix element distributions for any further purpose of large matrix simulations.
However, our emsemble is different, because on the diagonal we have the BR distribution,
and the off-diagonal elements are from some general ensemble. By some intuitive thinking
one expects that the final result will depend mainly only on the standard deviation σ of the
off-diagonal matrix elements, which is true to some extent, but nevertheless there are some
deviations from the Gaussian case if we replace the off-diagonal matrix element distribution
by an exponential or box (uniform) distribution with the same σ . However, the 2D analytic
theory is always in agreement with the higher dimensional counterpart, and the result thus
practically does not depend on the size of the matrix. This will be discussed in more detail in
section 5, where we show the results of analytic and numerical studies.

We now continue with the choice of the Gaussian distribution of the off-diagonal matrix
elements. For our two-dimensional model this means that we choose the ansatz

gb(b) = 1

σ
√

2π
exp

(
− b2

2σ 2

)
. (8)

The variance σ 2 serves as a parameter representing the strength of the all-to-all coupling
between the eigenstates as discussed. Then, using the fact that both ga and gb are even,
we immediately get the antenna-distorted Berry–Robnik (DBR) level spacing distribution (cf
[24]):

P A
DBR(S) = S

σ
√

2π

∫ π/2

0
dϕPBR (S cos ϕ) exp

(
−S2 sin2 ϕ

8σ 2

)
(9)

4 In addition all eigenvalues acquire imaginary parts due to the presence of the antenna. This effect is not considered
in the present work.
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One easily verifies that for σ → 0 one comes back to P A
DBR = PBR. Since we have not used

special properties of the BR distribution, this formula is valid for any prescribed level spacing
distribution function P0(S) instead of PBR(S). Moreover, other gb’s can be used instead of
(8). In section 3 we shall evaluate this distorted level spacing distribution by inserting the BR
distribution function PBR(S) in its explicit form into (9).

Let us briefly discuss the main features of our new distribution function P A
DBR(S). At a

small S, if PBR(0) �= 0, the level repulsion is linear

P A
DBR(S) ≈ S

√
πPBR(0)

2σ
√

2
. (10)

The steepness of the linear rise is inversely proportional to σ . Thus, the smaller the coupling
effects, modeled by the off-diagonal elements, the steeper P A

DBR(S) increases with S because
of the level coupling. The smaller σ , the closer is gb(b) to the delta function, i.e. to vanishing
distortion. Next, for completely chaotic systems PBR(S) reduces to the GOE level spacing
distribution (19) (reminding x ∝ S), thus PBR(0) = 0. The BR level spacing distribution
PBR(S) for small S is thus linear in S, and consequently according to (9) P A

DBR(S) is quadratic in
S near S = 0. The distorted level distance distribution, therefore, has quadratic level repulsion.
Exactly such a quadratic level repulsion has been found in experimental spectra from a Sinai
microwave billiard [58].

In a higher dimension N, we expect that the GOE level spacing distribution maps to
the GOE level spacing distribution under distortion, for σ larger than a characteristic σc(N),
which decreases with increasing dimension N of the random matrix at hand. For infinite
dimension σc(N → ∞) probably shrinks down to zero, σc(∞) = 0. Recent numerical
evidence supports this expectation. Therefore, the dimension N of the matrix is also important
and the dependence of the model on the dimension N has to be further explored in detail.

At the very large S/σ , the main contribution to the integral (9) comes from ϕ ≈ 0. Then
we can make the approximation sin ϕ ≈ ϕ, and cos ϕ ≈ 1, the integration interval can be
extended from 0 to ∞, thereby committing only an exponentially small error, and we find, to
the leading order in S/σ

P A
DBR(S) ≈ PBR(S), (11)

so P A
DBR(S) has precisely the BR tail. We shall work out more analytical aspects of (9) in the

following sections.
The distorted BR distribution defined in (9) is normalized by construction, but not its

first moment. If we want to use it as a model distribution for real, experimental spectra, after
the spectral unfolding it must be normalized to unit mean level spacing 〈S〉 = 1. Such a
normalized distribution will be denoted by P An

DBR(S). It can be easily obtained by rescaling
the argument of P A

DBR(S) by a scale factor BA,

P An
DBR(S) = BAP A

DBR(BAS), with BA =
∫ ∞

0
xP A

DBR(x) dx. (12)

Numerically, in our calculations, we found that BA is typically in the range 1.01–1.20 if σ is
in the range 0.05–0.30. Please note that asymptotically at large S the distribution P An

DBR(S)

behaves like a stretched BR distribution, in accordance with two formulae (11) and (12).
This is exactly what we shall observe in comparing this model theory with the numerical
simulations of random N matrices, e.g. in figure 3.

Let us now turn to the situation that there are tunneling processes coupling only the
integrable and the chaotic parts of the spectrum. This means that there are off-diagonal
elements only between regular and chaotic states, but not between chaotic and chaotic nor
between regular and regular ones. We introduce the BR parameters ρ1 and ρ2 = 1−ρ1, where
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ρ1 and ρ2 are the relative densities of the regular and chaotic levels, respectively. Henceforth,
we denote ρ1 = ρ and ρ2 = 1−ρ, ρ describing the relative density of the regular states. Since
the number of pairs of states taking part in the tunneling is 1−ρ2

1 −ρ2
2 = 2·ρ1 ·ρ2 = 2ρ(1−ρ),

namely the complement of the regular–regular and the chaotic–chaotic pairing, the previous
distribution function (8) has to be modified into

gb(b) = 2ρ(1 − ρ)
1

σ
√

2π
exp

(
− b2

2σ 2

)
+ [1 − 2ρ(1 − ρ)]δ(b). (13)

Here σ again measures the tunneling strength between regular and chaotic states, while ρ

measures the relative fraction of the available regular tunneling partners. The number of pairs
coupled by tunneling is described by two times the number of regular states times the number
of chaotic states. With this gb(b) the resulting tunneling-distorted Berry–Robnik distribution
function is now immediately obtained as

P T
DBR(S) = 2ρ(1 − ρ)P A

DBR(S) + [1 − 2ρ(1 − ρ)]PBR(S). (14)

This is thus nothing but the weighted mean of the undistorted and the antenna-distorted
(distorted by all-to-all couplings) Berry–Robnik distributions. For both limiting cases,
ρ = 0 and ρ = 1, the original GOE and PE (Poisson ensemble) level spacing distributions,
respectively, are recovered as it should be. We note that the tunneling distorted BR distribution
(14) has normalized total probability to unity, but not its first moment (the mean level spacing).
In order to compare the theoretical distribution with the spacing distribution from real data
(experimental or numerical) the rescaling, or normalization of the first moment to one, must
be performed exactly as in equation (12). Then we get the final theoretical tunneling distorted
BR distribution function, by using the rescaling factor BT

P T n
DBR(S) = BT P T

DBR(BT S), with BT =
∫ ∞

0
xP T

DBR(x) dx. (15)

3. Analytical studies of the distorted Berry–Robnik distribution

The level spacing distribution P(S) for any spectrum is always equal to the second derivative
of the gap probability E(0, S) in an interval of length S, P (S) = d2E(0, S)/dS2 [25]. The
gap probability factorizes upon a statistically independent superposition of independent level
sequences. From here onwards, we shall denote the gap probability by E(S). The basic
finding in the BR picture is the fact that E(S) for the total spectrum of a mixed system
is a product of all gap probabilities, whose arguments must be weighted by the classical
parameters ρi measuring the relative volume of phase space of the regular component (i = 1),
the largest chaotic component i = 2, the next largest chaotic i = 3, etc. We already have
restricted ourselves to the simple but usually sufficient approximation of just two components,
the regular one i = 1, with ρ1 ≡ ρ, and the chaotic one i = 2, with ρ2 = 1 − ρ, such that
ρ1 +ρ2 = 1. Then the gap probability for the entire spectrum is E(S) = E1(ρ1S)E2(ρ2S). (In
this paper consistently the label i = 1 denotes the regular component and i = 2 the chaotic
one and ρ without label means ρ1.) Thus the BR level spacing distribution can be written in
the following way

PBR(S) = d2

dS2
E1(ρ1S)E2(ρ2S). (16)

It is now useful to introduce two quantities related to E(S). First F(S), defined as
the probability that the level spacing is larger than S. Second the cumulative level spacing
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distribution W(S) = ∫ S

0 P(x) dx. The relations hold F(S) = −dE/dS = 1 − W(S). Using
this one can rewrite (16) as

PBR(S) = ρ2
1P1E2 + 2ρ1ρ2F1F2 + ρ2

2E1P2, (17)

where the argument of each quantity with index i is ρiS, i = 1, 2. For the chaotic case we
have to use the GOE (or GUE, GSE) results for infinite matrices, for which we have no closed
form expressions. However, it is well known that the Wigner distribution, which is an exact
GOE result for 2 × 2 matrices (here we treat only GOE, leaving GUE and GSE aside), is
a good approximation to the infinite matrix case for many practical and analytical purposes.
With this in mind, we have then for the Poissonian statistics in the regular case i = 1

E1(x) = F1(x) = P1(x) = e−x (18)

and for the entirely chaotic case, i = 2, the Wigner approximations (2D GOE)

P2(x) = πx

2
exp

(
−πx2

4

)
, F2(x) = 1 − W2(x) = exp

(
−πx2

4

)
, (19)

and

E2(x) = 1 − erf

(√
πx

2

)
= erfc

(√
πx

2

)
, (20)

where erf(x) = 2√
π

∫ x

0 e−u2
du is the error integral and erfc(x) its complement, i.e.

erfc(x) = 1 − erf(x). With (18)–(20) the BR level spacing distribution function (17) can
be written as

PBR(x) = e−ρ1x

{
e− πρ2

2 x2

4

(
2ρ1ρ2 +

πρ3
2x

2

)
+ ρ2

1 erfc

(√
πρ2x

2

)}
. (21)

PBR is normalized and its first moment as well, 〈S〉 = 1. The second moment is always equal
to 〈S2〉 = 2

∫ ∞
0 E(x) dx, and is often interesting and important. For the BR distribution, it

can be expressed in a closed form

〈S2〉BR = 2

ρ1

{
1 − e

ρ2
1

πρ2
2 erfc

(
ρ1√
πρ2

)}
. (22)

In the case of the Poisson statistics, ρ1 = 1, ρ2 = 0, it is 〈S2〉 = 2 while for the Wigner GOE
case with ρ1 = 0, ρ2 = 1 we have 〈S2〉 = 4/π .

We are now going to work out good analytical approximations for the antenna distorted
level spacing distribution P A

DBR given in equation (9), namely for small S and for large S, by
introducing (21) for PBR into the general expression (9).

3.1. Small S behavior of P A
DBR(S)

Let us expand PBR(x) from (21) into a Taylor series at a small x, as follows

PBR(x) =
∞∑

k=0

akx
k. (23)

Then P A
DBR(S) is given by the series, from equations (9) and (23),

P A
DBR(S) = S

σ
√

2π

∞∑
k=0

akS
k

∫ π/2

0
cosk ϕ exp

(
−S2 sin2 ϕ

8σ 2

)
dϕ, (24)
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which should be a good approximation for small S. The relevant integrals can be worked out∫ π/2

0
cosk ϕ exp(−α sin2 ϕ) dϕ =

√
π	

(
1+k

2

)
k	

(
k
2

) 1F1

(
1

2
, 1 +

k

2
,−α

)
, (25)

where 1F1(x) is the confluent hypergeometric function. Here α = S2/8σ 2. The confluent
hypergeometric function can be further expressed in terms of special functions as follows:

k = 0 : 1F1

(
1

2
, 1,−α

)
= e−α/2I0

(α

2

)
, (26)

k = 1 : 1F1

(
1

2
,

3

2
,−α

)
=

√
π

2
√

α
erf(

√
α), (27)

k = 2 : 1F1

(
1

2
, 2,−α

)
= e−α/2

[
I0

(
α

2

)
+ I1

(
α

2

)]
. (28)

I0 and I1 are the modified Bessel functions of the first kind, of zero and first order, respectively.
Terms k = 3 are complicated combinations of exponential and error functions and the
complexity even increases with increasing k. The coefficients in the Taylor expansion (23) are
as follows:

a0 = ρ2
1 + 2ρ1ρ2, (29)

a1 = −ρ3
1 − 3ρ2

1ρ2 +
πρ3

2

2
, (30)

a2 = 1

2

(
ρ4

1 + 4ρ3
1ρ2 − 2πρ1ρ

3
2

)
, (31)

a3 = 1

24

(−4ρ5
1 − 20ρ4

1ρ2 + 20πρ2
1ρ3

2 − 3π2ρ5
2

)
. (32)

Now we can expand the hypergeometric function into a Taylor series in terms of α = S2/8σ 2

and consistently work out all terms up to and including the cubic terms in S. We get, for a
small S,

P A
DBR(S) ≈ S

σ
√

2π

{
π

2

(
ρ2

1 + 2ρ1ρ2
)

+

(
−ρ3

1 − 3ρ2
1ρ2 +

πρ3
2

2

)
S

+
π

4

(
a2 − a0

8σ 2

)
S2 +

1

3

(
− a1

8σ 2
+ 2a3

)
S3

}
+ O(S5). (33)

We see that the antenna-distorted level spacing distribution P A
DBR(S) is linear at S = 0 if

ρ1 �= 0, namely

P A
DBR(S) ≈

√
π

2σ
√

2

(
ρ2

1 + 2ρ1ρ2
)
S. (34)

If there is no regular part, ρ1 = 0, and only the chaotic range contributes, ρ2 = 1, we have
quadratic level repulsion with the leading term

P A
DBR(S) ≈

√
π

2σ
√

2
S2, (35)

which, as we mentioned before, is expected due to the assumption that all pairs of levels are
coupled, namely the regular and chaotic ones, the chaotic and chaotic and the regular and
regular [58]; in this case obviously only chaotic–chaotic.
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We have verified numerically the accuracy of approximation (33), as compared with
the exact evaluation of P A

DBS(S), and found that the quadratic and cubic terms in the curly
brackets, which stem from the expansion of the confluent hypergeometric function 1F1, do
not significantly improve the quality of the approximation for sufficiently small S. In fact, the
region of good agreement (within about a few percent) with the exact formula extends up to
S � 0.4 if only the first two terms in equation (33) are taken, and up to S � 0.7 if we take all
the terms in (33).

3.2. Large S behavior of P A
DBR(S)

We go back to equation (9) and calculate P A
DBR(S) at a large S/σ � 1. The main contribution to

the integral comes from the interval close to ϕ = 0. Therefore we can make the approximations
sin ϕ ≈ ϕ and cos ϕ ≈ 1 + ε ≡ 1 − ϕ2/2. We then apply in (9) the Taylor expansion
PBR(S + εS) = PBR(S) + εS dPBR/dS and extend the upper integration limit to ∞, thereby
committing only an exponentially small error. Then the integrals can be done in a closed form
and we obtain

P A
DBR(S) ≈ PBR(S) − 2σ 2

S

dPBR(S)

dS
. (36)

The derivative dPBR(S)

dS
can be calculated explicitly from (21), namely

dPBR(S)

dS
= −1

4
exp

(
−ρ1S − π

4
ρ2

2S
2
) {

12ρ2
1ρ2 − 2πρ3

2 + 6πρ1ρ
3
2S + π2ρ5

2S2

+ 4ρ3
1 exp

(π

4
ρ2

2S
2
)

erfc

(√
πρ2

2
S

) }
. (37)

Thus P A
DBR(S) has asymptotically exactly the same tail as PBR(S), and the first lowest correction

is described in terms of the first derivative of PBR(S). Higher order corrections increase in
complexity, but can be worked out if necessary.

Using equation (36) and (14), we can also write down the asymptotic behavior of the
tunneling distorted BR distribution (here 〈S〉 is not yet normalized) at large S, namely

P T
DBR(S) ≈ PBR(S) − [1 − 2ρ(1 − ρ)]

2σ 2

S

dPBR(S)

dS
. (38)

The normalized distributions P An
DBR(S) and P T n

DBR(S) are then calculated by the rescaling
procedure as defined in equations (12) and (15). It is then exactly due to the rescaling
factor BT that the tail of P T n

DBR(S) at large S is not exactly BR distribution, but stretched
BR distribution according to equation (15), unless BT = 1. The same reasoning applies to
P An

DBR(S) with the rescaling factor BA.
Finally, we should note that the Wigner approximation (19) and (20) is very useful for

analytical studies, as it captures all important features of the BR and distorted BR level spacing
distribution. However, in very precise calculations and analyzes, especially in numerical work,
it is necessary to take the exact GOE results in the large dimension limit for P2, F2, E2, to get
the precise expression for the BR distribution as defined in (16) and (17), and consequently for
the antenna distorted BR distribution (9). This is indeed what we did in numerical work, where
we used the Padé approximations derived from [60] for the quantity W2(S) = 1−F2(S), from
which P2(S) is obtained by differentiation and E2(S) by integration. If instead just the Wigner
approximation was used, we found visible and statistically significant deviations (within one
per cent or so) of the two-level formula from P An

DBRN(S) for not too large values of ρ1, that
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is for ρ1 � 0.35, whilst for the larger ρ1 the Wigner approximation is good enough. This is
important for the applications in the following section.

4. Simulations with random matrices

4.1. The antenna distorted Berry–Robnik distribution (all-to-all couplings)

Let us start with the situation that there are Gaussian distributed off-diagonal matrix elements
for all pairs of eigenvalues. It was stated above that this corresponds to microwave cavities
(‘quantum billiard systems’) in the presence of an antenna. This is not exactly true, since
for this situation usually the matrix elements are not Gaussian distributed. For a delta-like
scatterer, the off-diagonal matrix element coupling two states n and m is proportional to ψnψm

where ψn and ψm correspond to the values of the wavefunctions of the unperturbed cavity at
the antenna position (see chapter 6 of [2]). If both ψn and ψm at the antenna positions are
Gaussian distributed, which is the case if both n and m are states belonging to the chaotic part
of the phase space, the distribution of the product ψnψm is described by a modified Bessel
function, i.e. is non-Gaussian! For regular eigenstates there is no universal distribution for
the wavefunction amplitudes (needed at the antenna positions), with the consequence that the
distribution of matrix elements coupling chaotic and regular, as well as regular and regular
states, is non-universal as well. It would have been no problem to take this into account, both
for the 2 × 2 model and the simulations. But since the main issue of the present work is the
modification of the Berry–Robnik formula due to couplings, we applied a pragmatic approach
and assumed Gaussian distributions with the same variance for all off-diagonal matrix elements
describing the coupling of the chaotic–chaotic, chaotic–regular, and regular–regular states. In
section 5 we study the dependence of the results on the type of the statistics of the off-diagonal
matrix elements.

We introduce the normalized N-level antenna distorted BR spacing distribution function
denoted by P An

DBRN , where N is the dimension of the matrix. It is the level spacing distribution,
after unfolding, of a random matrix ensemble which on the diagonal has the unfolded
eigenvalues obeying the Berry–Robnik distribution (taking the exact large N limit distance
distribution for the GOE part) with the given and fixed value of parameters ρi, i = 1, 2, . . . ,

whereas all off-diagonal elements are Gaussian distributed (8) with the same variance σ 2. So
the distribution function depends on all the BR parameters ρi, i = 1, 2, . . . and the coupling
(or, in physical systems the tunneling) parameter σ .

If we can ignore chaotic components smaller than the dominating one, there are only
two parameters left ρ1 = ρ together with ρ2 = 1 − ρ and σ . We expect the two-parameter
level spacing distribution function to be an adequate description of the level spacings of real
quantum dynamical systems of the mixed type.

We have done extensive numerical calculations of the said two-parameter distribution
function P An

DBRN(S), with N = 1000. The diagonal spectrum was generated by a large block
random matrix with a Poissonian block of a relative size ρ, and the remaining chaotic block
of a relative size 1 − ρ with the GOE statistics. Unfolding was done by using the Wigner
semicircular level density rule for the chaotic part. The result is the BR spectrum by definition
and construction.

Then the distorted BR matrix of dimension N = 1000 (denoted by DBRN) was
constructed for 1000 realizations of the same ensemble and diagonalized, so that we get
one million objects in one histogram, thus achieving high statistical significance, which is
manifested in small fluctuations of the histogram around the expected smooth theoretical
curve. The resulting spectrum was unfolded each time by the phenomenological rule of
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determining the local density of levels (or local mean level spacing) by averaging over the
nearest 30 levels, i.e. 15 neighbors up and down. We wish to stress that this phenomenological
rule was carefully tested, using the GOE random matrices, where the optimal agreement with
the exact unfolding using the Wigner semicircle rule has been sought. We should explicitly
stress that although the unfolding rule with 30 neighbors is the best (for N = 1000), the
dependence on the number of neighbors is very weak, as we tested it for 12 up to 50 neighbors.
Here, again, the large N-limit has been used for the level spacing distribution of the chaotic
part (GOE) of the BR distribution entering (9).

The results are presented in figures 1–3, where we compare the numerical histograms for
P An

DBRN(S),N = 1000, with the 2D prediction of P An
DBR(S), for a variety of different values of

ρ and σ . Here we must emphasize that all the plots are theoretical results for given parameters
and thus no curve fitting is involved. The agreement for small variance σ 2 and all regular part
fractions ρ is very good. For a reference, we also plot in each figure the BR level spacing
distribution (dashed) with the same ρ to show the effect of the level coupling very clearly.

It is obvious that the two-level approximation can be expected to work properly only as
long as the off-diagonal elements are small compared to the mean level spacing, i.e. if σ  1.
To illustrate this, figure 1 shows a comparison of the results from the simulation P An

DBRN(S) and
the two-level expression (12) for P An

DBR(S) for σ = 0.05 and a number of ρ values, measuring
the relative contribution of the regular states. An excellent agreement is found for all ρ values.
For larger σ values the agreement between simulation and analytical curve (12) is still very
good as is evident from figure 2 where P An

DBR(S) and P An
DBRN(S) are shown for σ = 0.10 and

a set of ρ values. In figure 3 we compare the results for fixed ρ = 0.5 and varying coupling
strength σ = 0.01, 0.02, 0.03, 0.04; the agreement is very good for all these weak couplings,
whilst for larger coupling values, σ = 0.20 and σ = 0.30, the small deviations become visible,
as expected on theoretical grounds.

We have also tested smaller matrices like N = 30, and found very good agreement as
well.

4.2. The tunneling distorted Berry–Robnik distribution

To describe tunneling between the regular and chaotic phase space regions in physical systems,
we assume off-diagonal matrix elements only between regular and chaotic states, but not within
the regular and the chaotic block itself, respectively. Our approach is complementary to that
of [51] where a semiclassical approach has been used. In the cross coupling case the two-level
approximation gives an expression for the tunneling distorted Berry–Robnik formula P T n

DBR(S),
which is a weighted mean of the antenna distorted and the undistorted Berry–Robnik formula,
and then normalized to 〈S〉 = 1, see equations (14) and (15). Figure 4 shows results from the
simulations of P T n

DBRN(S) and the two-level expression for P T n
DBR(S), again for σ = 0.05 and a

number of ρ values. Figure 5 shows P T n
DBRN(S) and the P T n

DBR(S) for σ = 0.10 and a number
of ρ values. In figure 6 we display the results for ρ = 0.5 and σ = 0.01, 0.02, 0.03, 0.04.
In all these cases, the agreement between the N-level simulation and the two-level analytical
formula (12) is rather encouraging. The agreement is better for larger values of ρ, i.e., if the
regular part becomes dominant.

Though for σ = 0.05, the general agreement is still good, nevertheless there are significant
deviations between the two-level approximation and the results from the N-dimensional
simulations for small S values. In the N-dimensional simulation always a linear level repulsion
is observed for small S values, while the two-level approximation starts with a nonzero value
at S = 0. The region in S of steep linear level repulsion is indeed very small, within an
exponentially small S interval ∝ exp(−const./h̄eff), typical of tunneling phenomena, as can
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Figure 1. Numerical histograms for the antenna distorted level spacing distributions for level
coupling parameter σ = 0.05 and various values of the regular fraction ρ = 0.10, 0.25, 0.35,
0.50, 0.75, 0.90. All eigenvalues are coupled. The full line is the analytical 2D-matrix plot from
(12), the dashed curve represents the BR distribution. Numerical and analytical results are nearly
indistinguishable, the BR curve deviates noticeably. Both curves are calculated using the exact
evaluation of the GOE gap probability rather than the Wigner approximation. In the insets, we
show the small S behavior for all three curves.

be seen in the insets of figures 4 to 6. This observation reflects the fact that in the two-level
approximation the accidental degeneracies occurring generically in the regular part of the
spectrum are not lifted. In the N-dimensional simulations, on the other hand, all degeneracies
are lifted in the regular block, where there are no direct tunneling matrix elements, but second-
order tunneling, which couples two regular states indirectly via one or more chaotic states.
Here the two-level approximation necessarily must fail.

There is a number of alternatives to repair this defect of the 2D model. One obvious
possibility is the replacement of expression (13) for the distribution of tunneling matrix
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Figure 2. Same as figure 1 with the (still small) coupling parameter doubled σ = 0.10 and various
values of ρ = 0.10, 0.25, 0.35, 0.50, 0.75, 0.90. Again all eigenvalues are coupled.

elements by

gb(b) = 2ρ(1 − ρ)
1

σ
√

2π
exp

(
− b2

2σ 2

)
+ [1 − 2ρ(1 − ρ)]

1

σ1

√
2π

exp

(
− b2

2σ 2
1

)
, (39)

where σ1 > 0 takes into account phenomenologically the second order splitting in the regular
block. That no longer is fully regular and thus no longer is ∝ δ(b). Since the splitting of
the regular states is a second-order effect, σ1 should be considered as proportional to σ 2.
We have not yet been able, however, to establish an explicit relation between σ1 and σ in
this modification of the model, and therefore refrain from improving the agreement between
simulations and theory by introducing a parameter, which would be ill founded. Further work
to improve this somewhat unsatisfactory situation is in progress.
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Figure 3. Same as figures 1 and 2 but for fixed ρ = 0.5 corresponding to equally large regular and
chaotic regions and various strengths σ of the all-to-all level coupling, namely for small values
σ = 0.01, 0.02, 0.03, 0.04, and for large values σ = 0.2, and σ = 0.3. All eigenvalues are coupled.
At large values of σ we see small deviations of the numerical simulations from the 2D theoretical
model, as expected on theoretical grounds. Please observe that at large values of σ = 0.2, 0.3 the
tail of the distribution (12) (the full curve and the numerical histogram) behaves like a stretched
BR distribution rather than a pure BR distribution dashed curve). At smaller values of σ this effect
is not visible, because the stretch factor BA is very close to 1.

We also mention that so far we have not treated any localization effects [49, 52], or
flooding [38, 39]. Localization of chaotic states (deviation from the PUCS uniformity) would
be typically modeled by suppression of tunneling between certain (basis) states. Localization
near regular (stability) islands would be modeled by replacing ρ with some larger effective
ρeff , whilst (partial) flooding of regular (stability) islands would be modeled by some smaller
effective ρeff .
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Figure 4. Comparison of the tunnelling distorted level spacing distributions for fixed coupling
parameter σ = 0.05 and various sizes of the regular regions ρ = 0.10, 0.25, 0.35, 0.50, 0.75,
0.90. The histogram is for the numerical data P T

DBRN and the full line for the 2D model, namely
P T n

DBR. The dashed line is the BR distribution with the same ρ, just for comparison. Only couplings
between the regular eigenvalues and the chaotic ones are allowed, no mutual coupling between the
regular states themselves and none between the chaotic ones themselves. In the insets we show
the small S behavior of all three curves. The tunneling formula (14–15) is in good agreement with
the numerical simulations.

5. Dependence of the model on the matrix element statistics and comparison with
the experimental and numerical billiard spectra

In this section we study the dependence of our model on the statistics of the off-diagonal
elements, for which so far we have used only the Gaussian distribution with a given dispersion
σ 2.
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Figure 5. Same as figure 4 but twice the cross coupling (tunneling) strength σ = 0.10 and various
values of the relative size of the regular regions ρ = 0.10, 0.25, 0.35, 0.50, 0.75, 0.90. Again only
cross couplings of integrable states with chaotic ones are allowed but none within the regular or
within the chaotic states themselves.

For general non-Gaussian random matrix ensembles, modeling fully chaotic systems, the
statistics of local spectral fluctuations has been shown to obey the universal Gaussian RMT
in the limit of large dimension N → ∞, by Hackenbroich and Weidenmüller [59], provided
the level density in this limit is smooth and confined to a finite interval. For 2D ensembles an
explicit analytic theory has been performed recently by Grossmann and Robnik [55, 56] for a
variety of matrix element distribution functions, including the exponential and box (uniform)
distributions. Extensive numerical study [57] of such ensembles at the high dimension N
confirms the Hackenbroich–Weidenmüller prediction and shows that the transition to the
universal behavior is pretty fast. In cases that one of the two or both Hackenbroich–
Weidenmüller conditions are not satisfied, e.g. for the Cauchy–Lorentz distribution of the
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Figure 6. Same comparison of level spacing distributions as in figures 4 and 5, now for fixed
ρ = 0.5 (equal regular and chaotic parts) but varying (small) coupling by tunneling σ = 0.01, 0.02,
0.03, 0.04. As before only cross couplings between integrable eigenvalues and chaotic ones are
allowed.

matrix elements, where the level density for N → ∞ does not ‘live’ on a finite interval, we
see deviations from the GOE level spacing distribution.

It is in this spirit that we want to explore the sensitivity of the distorted BR level spacing
distribution on the choice of the matrix element statistics. Thus in addition to the Gaussian
case already treated, as defined in (8), we shall consider the box (uniform) distribution

gb(b) =
√

3

6σ
if |b| � σ

√
3, and zero otherwise, (40)

and the exponential distribution

gb(b) =
√

2

2σ
exp

(
−|b|√2

σ

)
, (41)

both cases with the variance σ 2.
The sensitivity on deviations from a Gaussian distribution turns out to be relatively weak,

and this is clearly demonstrated in figure 7 where we plot the result for the normalized antenna
distorted BR distribution P An

DBRN(S) for the Gaussian, for the exponential and for the box
(uniform) distribution with the same dispersion σ 2. So these are different theoretical curves
with the same σ 2, and there is no (best curve) fitting involved here. In all three cases we
clearly see that the 2D theory for P An

DBR(S) of section 3 is a very good (for the Gaussian and
the exponential models even excellent) approximation for the random matrix ensemble of the
dimension N = 1000. Nevertheless, the curves differ a little bit among themselves, especially
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Figure 7. Comparison of various theoretical curves for the antenna distorted normalized BR level
spacing distribution P An

DBRN resulting from different distributions of the nondiagonal elements.
Left: exponential distribution of the off-diagonal matrix elements: histogram from the numerical
simulations with the matrices N = 1000 which agrees very well with the 2D formula (full curve),
but they both only slightly disagree with the Gaussian model (dotted). We also show the BR
distribution function with the same ρ (dashed). Right: box (uniform) distribution of the off-
diagonal matrix elements: histogram from the numerical simulations with the matrices N = 1000
which agrees very well with the 2D formula (full curve), but they both only slightly disagree with
the Gaussian model (dotted). We also show the BR distribution function with the same ρ (dashed).
In the Gaussian case the N = 1000 result agrees very well with the 2D formula as can be seen in
figure 2 (top-right).

in the central region of 0.3 � S � 0.6, while the small S behavior (the level repulsion) and
the large S behavior (the tail) are in good agreement with the Gaussian model. In fact the tail
for exponential distribution is analytically the same as for the Gaussian model (36). The ratio
of the slopes at S = 0 for the exponential and the Gaussian case is

√
π , and for the box and

the Gaussian case it is
√

π/6, and remains so within 2% after rescaling of the first moment to
unity, using the stretch factor BA. The agreement between the Gaussian and other ensembles
is, therefore, quite satisfactory. Indeed, it is our intuitive expectation that the statistical spectral
properties of random matrix ensembles depend essentially only on the variance of the matrix
elements and not on other details of the ensemble, unless they become singular in a one or
another way.

Next in figure 8, we show the results for the spectra of a mushroom billiard whose
geometry is defined in the insets. We see that the best-fitting Gaussian model for P An

DBR for
the experimental data works quite well, as well as the Gaussian tunneling model P T n

DBR in
the case of the numerical billiard spectra. Similarly, the best fitting exponential model is of
comparable quality. In both cases, σ is the only fitting parameter, and ρ is determined by
classical dynamics. In the case of the experimental data, we find σG = 0.187 for the Gaussian
model and σE = 0.265 for the exponential model, while in the case of the numerical spectra
we find σG = 0.133 for the Gaussian model and σE = 0.156 for the exponential model.

For the sake of completeness, we mention briefly that in calculating the numerical spectra
we have employed the expanded boundary integral method developed very recently by Veble
et al [61]; we have used sequential levels from 180 to 280 for 81 geometrical configurations
of equidistantly varying parameter h (step �h = 0.0013) around the central position at
h = 10/19. (For the concave corner of 270◦ we have locally used a denser mesh of points
by factor one to four linearly increasing over an interval of length 0.4 away from the corner.)
The parameter ρ for these configurations varies only by about 1.4% around the central value
ρ = 0.269. The maximal absolute error in calculating the energy levels was about 0.004 in
units of the level spacing.



13902 G Vidmar et al

Figure 8. Top: Comparison of experimental data (histogram) with the best-fitting theoretical
curves for P An

DBRN : full line for the Gaussian model, dash-dotted for the exponential model, dashed
for BR (with the same ρ), and dotted for the Wigner distribution. Bottom: comparison of the
numerical data (histogram) with the best-fitting theoretical curves for P T n

DBRN : full line for the
Gaussian model, dashed-dotted for the exponential model, dashed for BR (with the same ρ) and
dotted for the Wigner distribution. σG and σE are the best-fitting values of σ for the Gaussian
and the exponential model, respectively. No is the number of objects in the histogram. For other
details see text.

For the experimental spectral data, we have employed the usual measuring techniques in
the microwave resonators developed by Stöckmann et al (see e.g. [2]), and we did so for 21
configurations by varying the geometrical parameter a, cf inset of figure 8, equidistantly around
the central value a = 0.525 (step �a = −0.0025). The parameter ρ for these configurations
varies only by about 8% around the central value ρ = 0.269. In each configuration, we used
the spectral stretches in the interval of 100–300 consecutive levels, and there were quite a few
levels missing, so a careful analysis of data was necessary to not involve spectral stretches
with missing levels (resonances). The physical scale of the geometry is specified uniquely by
noting that in the experiment we used an aluminium cavity with R = 400 mm. The thickness
of the cavity was 8 mm. The frequency interval was 3.1–5.3 GHz. In both cases, numerical
and experimental, we have chosen the examples where we think the statistical significance is
the best.

6. Discussion and conclusions

In this paper, we have deviced a random matrix model which describes the distorted Berry–
Robnik (BR) level spacing distribution due to tunneling between the regular and chaotic
states, denoted by P T n

DBRN(S). We derived a two-level analytic formula for P T n
DBR(S) which
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well agrees with the results for random matrices of the higher dimension N at not too large
value of the coupling parameter σ .

We also developed an analytic two-level model, leading to the level spacing distribution
P An

DBR(S), for all-to-all level couplings, which applies e.g. in the case of a general perturbation
such as the presence of an antenna in a microwave resonator (billiard), and is in excellent
agreement with the N-dimensional simulations P An

DBRN(S).
While the random matrix model is generally of a high dimension N, we found the analytic

two-dimensional random matrix model to be very successful. Its exact integral representation
P An

DBR(S) for the antenna distorted Berry–Robnik distribution (where all levels are supposed to
be coupled) can be expressed analytically in a closed form for the small S and large S regimes.
For medium S, an integral representation is given. The same applies to the tunneling distorted
Berry–Robnik distribution P T n

DBR(S), where only regular and chaotic levels are coupled by
tunneling. Still, an overall good simple analytic approximation is lacking. In a forthcoming
paper [54], we are going to further improve the present theory and to test its applicability in
specific quantum Hamiltonian systems of mixed type.

We have also demonstrated that other than Gaussian models for the couplings (the
exponential and box distributions for the off-diagonal matrix elements) agree with the
Gaussian model quite well, but nevertheless deviate significantly from the Gaussian model
at intermediate values of S. However, they always almost perfectly agree with their two-
dimensional approximation (two-level model). The experimental and numerical data for the
mushroom billiard can be nicely described by our theoretical models. With increasing energy
toward infinity (the semiclassical limit) σ must go to zero (and we find the BR behavior),
however not necessarily fast and monotonically. In our case we found that σ goes to zero
relatively fast, but not monotonously.

The main signature of a general all-to-all level coupling is the immediate emergence of
linear level repulsion, which is a very robust phenomenon described in formulae (5) and (6),
and more specifically in (9) and (10). This robustness in general has recently been studied
in [56]. Recently, two other attempts to model the tunneling effects have been published in
[51] and [39]. The overall picture of level spacings in mixed type systems has been reviewed
and discussed in [40]. According to this picture there is at a small S the regime of linear level
repulsion, then at larger S a regime of the fractional power-law level repulsion and then the
Berry–Robnik tail.

In this paper we have addressed only the tunneling effects, and no localization effects
have been treated so far. These latter are probably responsible for the fractional power-law
level repulsion, captured by the Brody-like distribution [28]. A 2D random matrix model, as
described by the general formula (5), with the singular matrix element distribution function
for the a’s, the diagonal elements, has been proposed in [56]. Indeed, the Hamilton operators
of nearly integrable systems (slightly perturbed integrable systems in the KAM scenario) are
quantally represented on the basis of the integrable part as sparsed matrices, which are expected
to have such a singular distribution of matrix elements [62]. Research in this direction is under
way.
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